Content of this Chapter

- > Fundamentals of Epitaxial Growth
- Self-Organized Growth of Semiconductor Quantum Dots
- > Thin Film Growth on Flat or Vicinal Substrates
- > Doping Engineering of Semiconductors

Thin Film Growth on Flat or Vicinal Substrates

- > Kinetic Instabilities
- > Homoepitaxy vs. Heteroepitaxy
- Critical Thicknesses in Heteroepitaxy on Flat Substrates
- Step Bunching and Step Suppression on Vicinal Substrates

Current Understanding of Thin Film Growth

- Thin film growth is a nonequilibrium process.
- ◆ A specific growth mode is an interplay between thermodynamics and growth kinetics.

Thermodynamics (free energy minimization) **Growth kinetics** (various atomic rate processes) $r_i = v_0 exp\{-V_i/k_BT\}.$

Philosophy

If we can establish **EVERY** correspondence between

then we should be able to select a preferred growth mode via precise control of the profile with various rate processes.

Multiscale Description of Crystal Growth: Important Atomic Rate Processes

Terrace-Step-Kink (TSK) Model of Surface: Burton, Cabrera, Frank (1951)

STM confirmation: Swartzentruber, *et al.*, Phys. Rev. Lett. (1989) **Important Atomic Rate Processes:** Lagally & Zhang, Nature (2002)

Ehrlich-Schwoebel Barrier & Villain Instability

ES Barrier: An adatom descending at a step edge encounters a higher potential energy barrier than that for surface diffusion.

Ehrlich & Hudda (1966); Schwoebel & Shipsey (1966). **Villain Instability:** Growth is unstable if there are no adatom descending events. *Villain (1991).*

Island Shape Selection in Submonolayer Epitaxy

Q: What is the rate-limiting process separating the fractal from compact growth regime?

Island-Corner Barrier Effect

Without efficient adatom corner crossing, submonolayer growth will lead to the formation of fractal or dendritic islands.

Z. Y. Zhang and Max Lagally, Science, 276, 377 (1997); Zhong, Tianjiao, Zhang, Z. Y., Lagally, PRB 63, 113403 (2001).

Instabilities in Homoepitaxy vs. Heteroepitaxy

Homoepitaxy: All instabilities in nonequilibrium epitaxial growth are **kinetic** in nature.

Heteroepitaxy: The growth instabilities can be thermodynamically driven, or kinetically limited, or BOTH, making it conceptually more demanding and challenging.

Even kinetically driven, the growth kinetics can be significantly influenced by **the mismatch-induced strain**.

Basic Atoms-to-Continuum Method

$$P(n, t + \tau) = \frac{1}{2}P[(n-1)a, t] + \frac{1}{2}P[(n+1)a, t]$$
$$P(n, t + \tau) = P(n, t) + \frac{\partial P}{\partial t}\tau + \cdots$$
$$P[(n \pm 1)a, t] = P(n, t) \pm \frac{\partial P}{\partial x}a + \frac{1}{2}\frac{\partial^2 P}{\partial x^2}a^2 + \cdots$$

Take $a \to 0$ and $\tau \to 0$ such that a^2/τ is constant:

$$\frac{\partial P}{\partial t} = D \frac{\partial^2 P}{\partial x^2}, \qquad D = \frac{a^2}{2\tau}$$

Edwards–Wilkinson Model

A particle that arrived on top of the column at x sticks at the lowest column among the nearest neighbours, x and x + 1 or x-1.

(b)

Surface configuration in the steady state

Edwards and Wilkinson, *Proc. Roy. Soc. London Ser. A* **381**, 17 (1982)

The Wolf-Villain Model

A particle that arrived chooses the column on top of which it touches the most occupied sites (*i.e.* the most occupied neighbors).

This is intended to simulate surface diffusion at not too high temperatures where the particles move only a short distance to find a favorable growth site before other particles are deposited on top of them.

> Wolf and Villain, *Europhys. Lett.* **13**, 389 (1990) Clarke and Vvedensky, *Phys. Rev. B* **37**, 6559 (1988)

Main Focus of Those Statistical Modeling

Gives Scaling Properties & Universality (but

minimal touch with real systems)

Thin Film Growth on Flat or Vicinal Substrates

Dynamics of Strained Film Growth on Vicinal

Substrates

Dr. Mina Yoon

Staff Scientist Oak Ridge National Laboratory Dept. of Physics, Univ. of Tennessee

myoon@ornl.gov

In Collaboration with

Experiment: Ho Nyung Lee, Hans Christen (*ORNL*) Theory: Wei Hong, Zhigang Suo (*Harvard*), Zhenyu Zhang (*ORNL,UT*)

Pulse Laser Deposition (PLD)

Epitaxy on a Vicinal Surface

3/28/2007

Superlattice of Ferroelectric Oxides

3/28/2007

Growth Modes

Step Flow

Step Bunching

Step flow is preferred **But how to achieve step flow?**

for applications that require defect-free, atomically smooth films.

3/28/2007

Experiments: SrRuO₃ on SrTiO₃ Growth by PLD

X-ray diffraction:

SRO films were fully strained to match the STO substrates.

Island Formation in PLD

- Temperature is high. In each deposition pulse, islands may (or may not) form, but they are unstable.
- Time to evacuate adatoms from a terrace $\tau_{life} = L^2 / 2D$
- Islands will form when $\tau_{life} > \tau_{period}$

3/28/2007

• Kinetic effect

- Asymmetric attachment promotes step flow.

Schwoebel, J. Appl. Phys. 40, 614 (1969)

- Energetic effect
 - Elastic energy promotes step bunching.

Tersoff et al, PRL **75**, 2730 (1995)

Step flow prevails when deposition flux is high enough.

3/28/2007

Asymmetric attachment promotes step-flow

- Ehrlich-Schwoebel barrier Schwoebel, J. Appl. Phys. 40, 614 (1969)
- Asymmetric attachment: $k_+ >> k_-$

3/28/2007

• Schwoebel effect: during deposition, a large terrace becomes small, and a small terrace becomes large.

Schwoebel effect

Questions to be addressed

How to stabilize step flow?

Can we determine the stability of step flow in the early stage before step bunching occurs?

✤ Is there any thickness dependence in the step flow?

How to Stabilize Step Flow?

AFM images of SrRuO₃/SrTiO₃

Images from [W. Hong et al., Phys. Rev. Lett. 95, 095501 (2005)]

Thus, in order to achieve step flow:

- Avert island formation
- Avert step bunching

Avert Island Formation In Molecular Beam Epitaxy (MBE) condition

Homogeneous deposition of adatoms **Temperature is Low** Once an island forms, it is **stable**

Life time of adatoms (time for an adatom reach a step): $\tau_{life} = L^2 / 2D$

Landing time (time between two consecutive incident adatoms to land in an area of L²):

To avert island formation: $\tau_{life} < \tau_{land}$

 $\tau_{land} = \left(\frac{a}{L}\right)^2 \frac{1}{F}$

D: diffusitivity,*F*: flux*a*: lattice constant

$$F < 2Da^2 / L^4$$

Avert Island Formation in Pulsed Laser Deposition Condition

Each pulse deposits a large number of atoms

Temperature is high

In each deposition pulse, islands may form, but they are **unstable**

Life time of adatoms (time for an adatom reach a step): $\tau_{life} = L^2 / 2D'$ Landing time (period between pulses): $\tau_{period} = \frac{N_p}{F}$

To avert island formation:
$$\tau_{life} < \tau_{period}$$

 $F < 2N_p D / L^2$

D': effective diffusitivity

Avert Step Bunching

Heteroepitaxy: Elastic Energy

• Energetics effect:

On a strained surface, steps **attract** each other

[Marchenko, JEPT 54, 605 (1981)] [Tersoff et al., PRL (1995)75, 2730] **step bunching**

On a vicinal substrate: Ehrlich-Schwoebel barrier

• Kinetic effect:

Asymmetric attachment: $k_+ >> k_-$

[Schwoebel, J. Appl. Phys. 40, 614 (1969)]

Competition: Energetics vs. Kinetics

- Equilibrium coverage of adatoms under the step-step elastic interactions $f_n(x_n)$: $c_{eq}(x_n) = \exp\left(-\frac{E_0 + Af_n}{k_B T}\right)$ $f_n = \alpha \sum_{m=\pm 1}^{\pm \infty} \frac{1}{x_{n+m} - x_n}$ [Tersoff et al., PRL (1995)75, 2730]
- Adatom diffusion flux: $\begin{aligned} -D\frac{\partial c}{\partial x} &= k_{-}\left[c^{-} c_{eq}\right] \\ C(x_{n}^{-}) &\neq C(x_{n}^{+}) \neq c_{eq}(x_{n}) \end{aligned}$

• Step velocity:

$$\frac{dx_n}{dt} = k_{-}[c(x_n) - c_{eq}(x_n)] - k_{+}[c(x_n) - c_{eq}(x_n)]$$

Equation of Motion

Quasi-steady state approximation:

Low flux

Steps move slowly within the time to approach steady state distribution

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} + F(t) \sim 0 \qquad \Longrightarrow \qquad c(x) = -\frac{F}{2D} (x - x_n)^2 + \beta_1 (x - x_n) + \beta_0$$

• Equation of motion of the step:

$$\frac{dx_n}{dt} = k_{-}\left[c\left(x_n^{-}\right) - c_{eq}\left(x_n\right)\right] - k_{+}\left[c\left(x_n^{+}\right) - c_{eq}\left(x_n\right)\right]$$

With proper boundary conditions

Avert Step Bunching: Linear Stability Analysis

• **Perturbation:**
$$x_{n+1} - x_n = L + q(t) \exp(iKn)$$

$$dq / dt = \Omega q \quad \text{where} \\ \Omega = \frac{1 - \cos K}{\frac{1}{k_{-}} + \frac{1}{k_{+}} + \frac{L}{D}} \left[\frac{\alpha_{1}Ac_{0}S}{k_{B}TL^{2}} - F \frac{\frac{1}{(k_{-})^{2}} - \frac{1}{(k_{+})^{2}}}{\frac{1}{k_{-}} + \frac{1}{k_{+}} + \frac{L}{D}} \right] + iF \sin K$$

 $\begin{array}{l} \mbox{Re}\ \Omega > 0 \ \mbox{unstable} \\ \mbox{Re}\ \Omega < 0 \ \mbox{stable} \end{array}$

• Step flow stability condition: Re $\Omega < 0$ ($k_{+} \gg k_{-}$) $\Longrightarrow \qquad F > \frac{\pi^{2} \alpha_{1} A c_{0} k_{-}}{k_{B} T L^{2}} \left(1 + \frac{L k_{-}}{D}\right)$ $c_{0} = e^{-\beta E_{0}}, D = D_{0} e^{-\beta E_{D}}, k_{-} = \frac{D}{a} e^{-\beta E_{ES}}, \alpha_{1} = \alpha_{1}(\varepsilon, Y, \nu)$

 E_{ES} : ES barrier E_{D} : diffusion barrier E_{0} : formation energy of an adatom D : adatom diffusion coefficient L : average terrace width α_{1} : elastic interaction parameter

Growth Mode Diagram

- New growth mode: concurrent step bunching and island formation
- Existence of persistent step flow

Growth Mode Diagram (continued)

Temperature Dependence

To avert step bunching

$$F > \frac{\pi^2 \alpha A c_0 k_-}{k_B T L^2} \left(1 + \frac{L k_-}{D} \right) \sim \begin{cases} \frac{1}{L^2} \exp\left(-\frac{E_0 + E_D + E_{ES}}{k_B T}\right) & \text{small } L \\ \frac{1}{L} \exp\left(-\frac{E_0 + E_D + 2E_{ES}}{k_B T}\right) & \text{large } L \end{cases}$$

To avert island formation

$$F < \frac{2N_p D}{L^2} \sim \frac{1}{L^2} \exp\left(-\frac{E_D}{k_B T}\right)$$

Growth Mode Diagram (continued)

Flux vs Temperature

Maximum Terrace Width

$$\begin{array}{c}
10^{2} \\
10^{1} \\
10^{1} \\
10^{2} \\
10^{1} \\
10^{2} \\
10^{2} \\
10^{-1} \\
10^{-2} \\
10^{-3} \\
10^{-4} \\
400 \\
600 \\
800 \\
1000 \\
1000 \\
1200 \\
1400 \\
T (^{\circ}C)
\end{array}$$

$$L_{\max} = \frac{D}{k_{-}} \left(\frac{2k_{B}TN_{p}D}{\pi^{2}A\alpha_{1}c_{0}k_{-}} - 1 \right)$$

Experiments & Theory

[Hong et al., Phys. Rev. Lett. 95, 095501(2005)]

Experiments & Theory (continued)

Experimental data points:

J. Choi et al., Appl. Phys. Lett. 79, 1447 (2001)

G. Rijnders et al., Appl. Phys. Lett. 84, 505 (2004)

Can We Determine the Stability of the Step Flow in the Early Stage?

***** Time evolution of step position:

$$dx_n / dt = V \Big[(x_{n+1} - x_n), (x_{n+2} - x_n), \dots, (x_{n-1} - x_n), (x_{n-2} - x_n), \dots \Big]$$

V: translational symmetry in the system is conserved

Step-width evolution:

$$d\delta_n / dt = \sum_{m=\pm 1}^{\infty} (\delta_{n+m} - \delta_n) \partial V / \partial r_m \quad \delta_n(t) = x_{n+1}(t) - x_n(t) - L$$

• Fourier transformation: $\hat{\delta}(K,t) = \sum_{n=-\infty}^{+\infty} \delta_n(t) \exp(-iKn)$ $\hat{\delta}(K,t) = \hat{\delta}(K,t_0) \exp[\Omega(K)(t-t_0)]$

$$\longrightarrow \partial \hat{\delta} / \partial t = \Omega \hat{\delta} \qquad \Omega(K) = \sum_{m=\pm 1}^{\pm \infty} \left[\exp(iKm) - 1 \right] \partial V / \partial r_m$$

* Determination of the stability of the step flow: $\operatorname{Re}[\Omega] = \frac{1}{t - t_0} \ln \left| \frac{\delta(K, t)}{\delta(K, t_0)} \right|$ Step positions at two different times: System parameters and growth mode can be determined!

Fourier analysis of the dynamics

Unstable: Step Bunching (low flux)

Any Thickness Dependence in Step Flow?

Evolution of steps in the "step bunching" region

Time evolution of the step position

$$x_n = L(n + Ft) + \Delta(t)\sin(2\pi n / N), \quad \Delta(t) = \Delta(0)e^{\Omega t}$$
$$\implies \text{Re}\,\Omega = \frac{1}{t - t_0}\ln\left|\frac{\hat{\delta}(K, t)}{\hat{\delta}(K, t_0)}\right| \approx \frac{\alpha_1 A c_0 D}{k_B T L^3} \left[1 - \frac{L}{L^*}\frac{\pi^2}{K(2\pi - K)}\right](1 - \cos K)$$

Maximum at $K=\pi$

 L^* : critical terrace width above which a persistent step flow occurs

$$\frac{\tau_C}{F} \approx C \frac{k_B T L^3}{\alpha_1 A c_0 D} \left(1 - \frac{L}{L^*}\right)^{-1}$$

For a film thickness $t < t_C$: step-flow occurs in the step bunching regime

Numerical Results

Scaling behavior of film growth is also numerically confirmed

Experiments & Theory

[M. Yoon et al., Phys. Rev. Lett. 99, 055503 (2007)]

2.5 nm

0.0 nm

- Existence of a critical thickness !
- Under certain thickness, always step flow observed at a given conditions
- System parameters can be extracted

Summary on Step Bunching

- Persistent step flow is possible by satisfying the conditions of averting island formation and averting step bunching.
- Even in the step bunching growth region, step flow can be achieved below critical thickness, where scaling behavior between critical thickness and flux is predicted.
- System parameters can be extracted using the growth-mode diagram and scaling behavior.